Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Battery-powered mobile devices (e.g., smartphones, AR/VR glasses, and various IoT devices) are increasingly being used for AI training due to their growing computational power and easy access to valuable, diverse, and real-time data. On-device training is highly energy-intensive, making accurate energy consumption estimation crucial for effective job scheduling and sustainable AI. However, the heterogeneity of devices and the complexity of models challenge the accuracy and generalizability of existing methods. This paper proposes AMPERE, a generic approach for energy consumption estimation in deep neural network (DNN) training. First, we examine the layer-wise energy additivity property of DNNs and strategically partition the entire model into layers for fine-grained energy consumption profiling. Then, we fit Gaussian Process (GP) models to learn from layer-wise energy consumption measurements and estimate a DNN's overall energy consumption based on its layer-wise energy additivity property. We conduct extensive experiments with various types of models across different real-world platforms. The results demonstrate that AMPERE has effectively reduced the Mean Absolute Percentage Error (MAPE) by up to 30%. Moreover, AMPERE is applied in guiding energy-aware pruning, successfully reducing energy consumption by 50%, thereby further demonstrating its generality and potential.more » « lessFree, publicly-accessible full text available August 26, 2026
- 
            Despite some promising results in federated learning using game-theoretical methods, most existing studies mainly employ a one-level game in either a cooperative or competitive environment, failing to capture the complex dynamics among participants in practice. To address this issue, we propose DualGFL, a novel federated learning framework with a dual-level game in cooperative-competitive environments. DualGFL includes a lower-level hedonic game where clients form coalitions and an upper-level multi-attribute auction game where coalitions bid for training participation.At the lower-level DualGFL, we introduce a new auction-aware utility function and propose a Pareto-optimal partitioning algorithm to find a Pareto-optimal partition based on clients' preference profiles.At the upper-level DualGFL, we formulate a multi-attribute auction game with resource constraints and derive equilibrium bids to maximize coalitions' winning probabilities and profits. A greedy algorithm is proposed to maximize the utility of the central server.Extensive experiments on real-world datasets demonstrate DualGFL's effectiveness in improving both server utility and client utility.more » « lessFree, publicly-accessible full text available April 11, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
